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We study the effects of the degree distribution in mutual synchronization of two-layer neural networks. We
carry out three coupling strategies: large-large coupling, random coupling, and small-small coupling. By
computer simulations and analytical methods, we find that couplings between nodes with large degree play an
important role in the synchronization. For large-large coupling, less couplings are needed for inducing syn-
chronization for both random and scale-free networks. For random coupling, cutting couplings between nodes
with large degree is very efficient for preventing neural systems from synchronization, especially when sub-
networks are scale free.
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Synchronization phenomena in neural systems have at-
tracted much attention. These phenomena are thought to be
important for functioning neural system, such as neural cod-
ing, visual information processing, sleeping, and memory in
brain �1–4�. Besides the complete synchronization, which re-
sults in identical states of all neurons in a uniform popula-
tion, more subtle forms of synchronization should be present
for examining the brain functions. The brain is essentially a
system of interacting neural networks and the activity pattern
of different networks may become synchronized while re-
taining their complex spatiotemporal dynamics. Therefore, it
is interesting to investigate mutual synchronization in en-
sembles of coupled neural networks �5�. This problem has
been studied on fully connected networks �6� and on random
networks �7�.

Recently, it was suggested that connectivity in neural sys-
tems is more complex �8�. The effects of complicated topolo-
gies on network dynamics have been confirmed in some the-
oretical studies. For instance, small-world neural networks
give rise to fast system response with coherent oscillations
�9�. Scale-free Hopfield networks can recognize blurred pat-
tern efficiently �10�. Complex networks have both sensitivity
and robustness as responding to different stimuli �11�. On the
other hand, synchronization is not always desired in neural
systems. For instance, several neurological diseases such as
Parkinson’s disease and epilepsy are caused by synchronized
firing of neural oscillators �12�. So it is also important to
study desynchronization and instability of synchronized mo-
tion of neural systems.

In this paper, we investigate the efficiency of scale-free
topology in inducing synchronization and preventing the sys-
tem from synchronization in two-layer neural networks. We
carry out three coupling strategies between subnetworks:
large-large coupling �couplings built between nodes with
large degree�; random coupling �couplings built between ran-
domly selected nodes�; small-small coupling �couplings built
between nodes with small degree�. Computer simulations re-
veal that couplings between nodes with large degree play an
important role either in inducing synchronization or prevent-

ing the system from synchronization. An analytical treatment
confirms the numerical simulation result.

We consider a neural network model that consists of N
neurons xi�t�� �−1,1�, i=1, ¯ ,N. The topology of net-
works was represented by symmetric adjacency matrix A
whose entry aij�i , j=1, ¯ ,N� is equal to 1 when neuron i
connects to neuron j, and zero otherwise. Each link has a
weight Jij which is a random number distributed uniformly
in the interval between −1 and 1. The system considered is
composed of two identical neural networks, and a part of
corresponding nodes in different subsystems is coupled to-
gether. The dynamics of the system is described by the fol-
lowing equations �6,7�:

xi
1�t + 1� = �1 − �i���hi

1�t�� + �i��hi
1�t� + hi

2�t�� ,

xi
2�t + 1� = �1 − �i���hi

2�t�� + �i��hi
1�t� + hi

2�t�� . �1�

In the equation, �i represents the coupling strength between
the nodes i in different networks. When a pair of nodes is
coupled, the coupling strength between them is equal to a
constant �i=�, otherwise �i=0. For large-large �small-small�
coupling we choose a group of nodes which consists of the
nodes of greatest �smallest� degree in a subnetwork, and take
�i=� if node i is in the group. Here hi

l�t� is the local field of
the ith neuron and is expressed by

hi
l = �

j=1

N

aijJijxj
l�t�, l = 1,2 �2�

denoting the signal arriving at neuron i at time t from neu-
rons of the same network. The local field is determined by
the network topology. The noncoupled nodes in each subnet-
work interact indirectly with another subnetworks through
the local field. The activity function ��r� is defined by

��r� = �1 + tanh��r��/2, �3�

where �=1/T characterizes a measure of the inverse magni-
tude of the amount of noise affecting this neuron, performing
the role of reciprocal temperature in analogy to thermody-
namic systems. For convenience, we set �=10 through all
simulations. The initial states of all neurons in two sub-*Electronic address: yhwang@lzu.edu.cn
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systems are randomly chosen. To measure coherence in this
coupled system, the dispersion of activity patterns is intro-
duced

D�t� =
1

2�
l=1

2

�
i=1

N

�xi
l�t� − x̄i�t��2, �4�

where x̄i�t�=�l=1
2 xi

l�t� /2 is the average activity of neurons
occupying the position i in both subnetworks at time t. The
dispersion vanishes when the system reaches the completely
synchronous state.

First, we investigate the number of couplings needed be-
tween two subnetworks for system synchronization to study
the efficiency of the network topology. In Fig. 1, we plot the
histograms of the number of couplings built to guarantee
synchronization for scale-free and random networks. We use
Barabási-Albert �BA� arithmetic �13� to generate the scale-
free network and use Erdös-Rényi �ER� arithmetic �14� to
construct the random network. According to the parameter
setting in Ref. �11�, we also choose the size �N=1000� and
average degree ��k�=20� for both kinds of networks. When
subnetworks are scale-free �see Fig. 1�a��, the mean fraction
of couplings are 58.2%, 80.7%, and 95.6%, corresponding to
the large-large coupling, random coupling, and small-small
coupling, respectively. This implies that the large-large cou-
pling strategy is more efficient than the random coupling and
the small-small coupling is the most inefficient method for
inducing synchronization. In addition, the small-small cou-
pling can be regarded as removing couplings which link
nodes with larger degree from the globally coupled system.
Therefore, removing couplings among nodes with larger de-
gree at the initial state can efficiently prevent the system
from synchronizing. In contrast to the case of scale-free to-
pology, the peaks corresponding to three coupling methods
for the system consisting of random networks are more close

�see Fig. 1�b��, which is caused by the homogeneous distri-
bution of network connectivity. This implies that the topol-
ogy of subnetworks and the degree of coupled nodes influ-
ence the efficiency of the system, and the scale-free topology
is more efficient than random network for inducing synchro-
nization or preventing the system from synchronized states.

Figure 2 shows the fraction of couplings needed to induce
synchronization versus the coupling strength �. Whether sub-
networks are scale free or random, there is a critical point
�c=0.44 below which partial coupled networks cannot syn-
chronize. For ���c, degrees of nodes taking part in interac-
tions between two subnetworks will efficiently affect syn-
chronization or the prevention of networks from
synchronization. The larger the parameter � is, the less cou-
plings are needed for system synchronization. Furthermore,
given the coupling strength, the scale-free topology is more
efficient than the random graph to synchronize in the case of
large-large coupling.

We now examine the dependence of the fraction of cou-
plings needed for synchronization on the average links per
nodes �k� in a subnetwork. For small �k�, due to few neigh-
bors per node and weak indirect interaction between non-
coupled nodes, more couplings are needed for networks to
synchronize. For large �k�, different from classical results of
network synchronization �15�, the coupled system still needs
many nodes to be coupled to ensure synchronization. Figure
3 displays a surprisingly nonmonotonic dependence of the
fraction on �k� for given network size and the coupling
strength, i.e., there exists an optimal value of �k� for which
the fraction of couplings reaches minimum. With the in-
crease of �k�, the interaction of nodes inside a subnetwork is
enhanced through the local field. The enhanced inside inter-
action brings the big indirect interaction between noncoupled
nodes, which helps to the synchronization of noncoupled
nodes. So less couplings are needed for system synchroniza-
tion when �k� increases. On the other hand, the evolution of
subsystems with stronger inside interaction is more stable
and it needs more couplings to drive their evolutions into

FIG. 1. �Color online� Histograms of the number of couplings
needed by the system to reach synchronization for three coupling
strategies: large-large coupling �solid line�, random coupling
�dashed line�, and small-small coupling �dotted line�, respectively.
The system is composed of BA networks �a� or ER networks �b�
with N=1000, �k�=20, and �=0.6. 1000 simulations were per-
formed for each histogram.

FIG. 2. �Color online� The number of couplings �fractions of
total nodes� needed for reaching synchronization as a function of
the coupling strength � for three coupling methods. The system is
made up of BA networks �a� or ER networks �b�. Parameters,
N=1000, �k�=20.
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synchronization �7�. The indirect interaction between non-
coupled nodes and the stability of subnetworks get a proper
match, when �k� takes the optimal value.

Next, we will demonstrate the difference between the ef-
ficiency of scale-free and random networks for inducing or
preventing synchronization. To determine the fraction of
couplings needed for synchronization, we consider a node
which does not take part in direct interaction between two
subnetworks. The state of this node is determined by its local
field, hi�t�, defined by Eq. �2�. The local field includes two
types of signals, one comes from neighbors which interact
with nodes of another subnetwork and the other comes from
the rest neighbors. Thus the total degree of the coupled nodes
determines whether the system can reach the synchronized
state through the intensity of signals in the mean local field.
For the the six schemes investigated in Fig. 1, we calculated
the critical values kc of the total degree of the coupled nodes
when synchronization occurs. These kc are normalized by the
sum of the degree of the subnetwork N� �k�. The standard
deviation of the critical values is 0.019, while the mean of
critical total degree of coupled nodes is 0.785. So we argue
that synchronization will occur if the sum of the degrees of
coupled nodes in one subnetwork exceeds a threshold.

For convenience of notation, the number of coupled nodes
is labelled to be Fr for random coupling and Fl for large-
large coupling. When the system is randomly coupled by
either scale-free or random subnetworks, the average degree
of coupled nodes is nearly the same as the average degree of
the subnetworks �k�. So the total degree of coupled nodes is

�
i=1

Fr

ki = �k�Fr, �5�

where ki is the degree of neuron i. For any network topology
with the same average degree and size, the fraction of cou-
plings is the same in the case of random coupling. Following
ideas developed by Bar-Yam and Epstein �11�, we get the
relation between the fraction of couplings for random cou-

pling �denoted by fr, fr=Fr /N� and the fraction of couplings
for large-large coupling �denoted by f l, f l=Fl /N�.

When subnetworks are random, the total degree of
coupled nodes is

�
i=1

Fl

ki = N�
kl

�
k�k�ke−�k�

k!
�6�

for large-large coupling, where kl denotes the minimum de-
gree of the coupled nodes. Thus the fraction of couplings is

f l = �
kl

�
�k�ke−�k�

k!
. �7�

So the difference of the fraction of couplings for two coupled
methods is

fr − f l =
�k�kl−1e−�k�

�kl − 1�!
, �8�

which maximum over kl is obtained approximately by setting
kl= �k�+1/2 for a given value �k� �11�.

When subnetworks are scale free, the degree distribution
has a power-law shape P�k�=Ak−�. The total degree of
coupled nodes is

�
i=1

Fl

ki = N�
kl

�

kP�k�dk =
1

� − 2
NAkl

2−� �9�

with the ancillary condition

Fl = N�
kl

�

P�k�dk =
1

� − 1
NAkl

1−� �10�

for large-large coupling. Normalizing the probability distri-
bution and assuming a sharp cutoff of the distribution at low
k, we yield

A =
�� − 2���−1�

�� − 1���−2� �k���−1�. �11�

Combining Eqs. �6�, �9�, and �11�, the relation between f l and
fr is obtained

f l = fr
��−1�/��−2�. �12�

For BA model, the degree exponent � is equal to 3 �13�.
Thus we have f l= fr

2.
There also exists a threshold of degree for preventing the

system from synchronization when we cut couplings from
the globally coupled system. This threshold is equal to the
difference between N�k� and the threshold of degree for en-
suring synchronization. Similarly, the relationship between
the fraction of removed couplings for large-large cutting and
random cutting also follow Eqs. �8� and �12�.

Figure 4�a� shows f l
1/2 / fr as a function of coupling

strength when subnetworks are scale free. In the case of
building couplings, numerical simulations give that
f l

1/2 / fr=1, which is consistent with Eq. �12�. In the case of
cutting couplings, the ratio is larger than the analytical pre-
diction when the coupling strength � is small, which results
from the fat tail �16� of BA networks. In other words, the

FIG. 3. �Color online� The dependence of the fraction of cou-
plings needed for reaching synchronization on the average degree
of subnetworks, BA networks �a� or ER networks �b�. Parameters:
N=1000, �=0.6.
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number of nodes with large degree is more than that de-
scribed by the power-law distribution. As a result, some extra
couplings between large degree nodes are removed in simu-
lations and therefore the number of cut couplings predicted
by analysis is less than that of simulations. When coupling
strength is strong, the number of couplings cut from the
coupled system is large, and the simulation results close to
the analytical prediction. Figure 4�b� shows the ratio f l

1/2 / fr
as a function of the average degree �k� of scale-free sub-
systems. For building couplings, simulation results agree
well with the analytical prediction. For cutting couplings, the

simulation results are greater than the analytical calculation
in the case of either �k� is low or large. The deviation results
from the small fraction of couplings in these regions as
shown in Fig. 3�a�. When subnetworks are random, the dif-
ference fr− f l are shown in Figs. 4�c� and 4�d� as a function
of the coupling strength � and the average degree of subnet-
works �k�. The analytical result of the upper boundary of
fr− f l gives a good limitation to numerical results. Although
building large-large couplings and removing large couplings
improve the efficiency in inducing and preventing synchro-
nization, the analytical result of random subnetworks re-
stricts the enhancement of efficiency to a small range which
is less than that of scale-free subnetworks.

In summary, we have studied the influences of the degree
distribution of networks on mutual synchronization in two-
layer neural networks. We investigated three coupling meth-
ods between two subsystems: large-large coupling, random
coupling, and small-small coupling. We found that couplings
between nodes with large degree nodes play an important
role in the synchronization. For large-large coupling, less
couplings are needed for inducing synchronization for both
random and scale-free networks. For random coupling, cut-
ting couplings between nodes with large degree is very effi-
cient for preventing neural systems from synchronization,
especially when subnetworks are scale free. By assuming
that the total degree of coupled nodes in subnetworks deter-
mines the system synchronization, the numerical simulation
results are interpreted analytically. The analysis reveals that
the degree distribution of subnetworks rather than other to-
pological quantities affects the efficiency of systems in syn-
chronization. Although our work is based on a simple model
of neural systems, we think that the results found out in this
work is proper in more wide and realistic situations in which
the dynamics of neurons depend on the mean local field. It
would be interesting if nature takes advantage of the effi-
ciency of the scale-free topology in controlling mutual syn-
chronization of interacted systems.
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FIG. 4. �Color online� Comparison of numerical results with
analytical predictions for building couplings to induce synchroniza-
tion �square� or cutting couplings to prevent the system from syn-
chronization �circle�. Upper panel, the ratio f l

1/2 / fr for scale-free
subnetworks as a function of the coupling strength �a� and of the
average degree of subsystems �b�. Lower panel, the difference
fr− f l for random subnetworks as a function of the coupling strength
�c� and of the average degree of subsystems �d�. The thick lines are
the maximum of fr− f l obtained by analytical calculations.
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